首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2202篇
  免费   525篇
  国内免费   215篇
测绘学   38篇
大气科学   244篇
地球物理   1148篇
地质学   742篇
海洋学   174篇
天文学   6篇
综合类   78篇
自然地理   512篇
  2024年   2篇
  2023年   11篇
  2022年   44篇
  2021年   94篇
  2020年   96篇
  2019年   77篇
  2018年   90篇
  2017年   137篇
  2016年   113篇
  2015年   114篇
  2014年   153篇
  2013年   248篇
  2012年   150篇
  2011年   151篇
  2010年   125篇
  2009年   120篇
  2008年   137篇
  2007年   163篇
  2006年   147篇
  2005年   100篇
  2004年   97篇
  2003年   91篇
  2002年   97篇
  2001年   84篇
  2000年   44篇
  1999年   32篇
  1998年   25篇
  1997年   37篇
  1996年   20篇
  1995年   20篇
  1994年   25篇
  1993年   16篇
  1992年   16篇
  1991年   11篇
  1990年   10篇
  1989年   8篇
  1988年   12篇
  1987年   4篇
  1986年   3篇
  1985年   2篇
  1984年   4篇
  1983年   5篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1972年   1篇
排序方式: 共有2942条查询结果,搜索用时 218 毫秒
1.
Understanding changes in evapotranspiration during forest regrowth is essential to predict changes of stream runoff and recovery after forest cutting. Canopy interception (Ic) is an important component of evapotranspiration, however Ic changes and the impact on stream runoff during regrowth after cutting remains unclear due to limited observations. The objective of this study was to examine the effects of Ic changes on long-term stream runoff in a regrowth Japanese cedar and Japanese cypress forest following clear-cutting. This study was conducted in two 1-ha paired headwater catchments at Fukuroyamasawa Experimental Watershed in Japan. The catchments were 100% covered by Japanese coniferous plantation forest, one of which was 100% clear-cut in 1999 when the forest was 70 years old. In the treated catchment, annual runoff increased by 301 mm/year (14% of precipitation) the year following clear-cutting, and remained 185 mm/year (7.9% of precipitation) higher in the young regrowth forest for 12–14 years compared to the estimated runoff assuming no clear-cutting. The Ic change was −358 mm/year (17% of precipitation) after cutting and was −168 mm/year (6.7% of precipitation) in the 12–14 years old regrowth forest compared to the observed Ic during the pre-cutting period. Stream runoff increased in all seasons, and the Ic change was the main fraction of evapotranspiration change in all seasons throughout the observation period. These results suggest that the change in Ic accounted for most of the runoff response following forest cutting and the subsequent runoff recovery in this coniferous forest.  相似文献   
2.
Wildfire increases the potential connectivity of runoff and sediment throughout watersheds due to greater bare soil, runoff and erosion as compared to pre-fire conditions. This research examines the connectivity of post-fire runoff and sediment from hillslopes (< 1.5 ha; n = 31) and catchments (< 1000 ha; n = 10) within two watersheds (< 1500 ha) burned by the 2012 High Park Fire in northcentral Colorado, USA. Our objectives were to: (1) identify sources and quantify magnitudes of post-fire runoff and erosion at nested hillslopes and watersheds for two rain storms with varied duration, intensity and antecedent precipitation; and (2) assess the factors affecting the magnitude and connectivity of runoff and sediment across spatial scales for these two rain storms. The two summer storms that are the focus of this research occurred during the third summer after burning. The first storm had low intensity rainfall over 11 hours (return interval <1–2 years), whereas the second event had high intensity rainfall over 1 hour (return interval <1–10 years). The lower intensity storm was preceded by high antecedent rainfall and led to low hillslope sediment yields and channel incision at most locations, whereas the high intensity storm led to infiltration-excess overland flow, high sediment yields, in-stream sediment deposition and channel substrate fining. For both storms, hillslope-to-stream sediment delivery ratios and area-normalised cross-sectional channel change increased with the percent of catchment that burned at high severity. For the high intensity storm, hillslope-to-stream sediment delivery ratios decreased with unconfined channel length (%). The findings quantify post-fire connectivity and sediment delivery from hillslopes and streams, and highlight how different types of storms can cause varying magnitues and spatial patterns of sediment transport and deposition from hillslopes through stream channel networks.  相似文献   
3.
The source and hydrochemical makeup of a stream reflects the connectivity between rainfall, groundwater, the stream, and is reflected to water quantity and quality of the catchment. However, in a semi-arid, thick, loess covered catchment, temporal variation of stream source and event associated behaviours are lesser known. Thus, the isotopic and chemical hydrographs in a widely distributed, deep loess, semi-arid catchment of the northern Chinese Loess Plateau were characterized to determine the source and hydrochemical behaviours of the stream during intra-rainfall events. Rainfall and streamflow were sampled during six hydrologic events coupled with measurements of stream baseflow and groundwater. The deuterium isotope (2H), major ions (Cl, SO42−, NO3, Ca2+, K+, Mg2+, and Na+) were evaluated in water samples obtained during rainfall events. Temporal variation of 2H and Cl measured in the groundwater and stream baseflow prior to rainfall was similar; however, the isotope compositions of the streamflow fluctuated significantly and responded quickly to rainfall events, likely due to an infiltration excess, overland dominated surface runoff during torrential rainfall events. Time source separation using 2H demonstrated greater than 72% on average, the stream composition was event water during torrential rainfall events, with the proportion increasing with rainfall intensity. Solutes concentrations in the stream had loglinear relationships with stream discharge, with an outling anomaly with an example of an intra-rainfall event on Oct. 24, 2015. Stream Cl behaved nonconservative during rainfall events, temporal variation of Cl indicated a flush and washout at the onset of small rainfall events, a dilution but still high concentration pattern in high discharge and old water dominated in regression flow period. This study indicates rainfall intensity affects runoff responses in a semi-arid catchment, and the stored water in the thick, loess covered areas was less connected with stream runoff. Solute transport may threaten water quality in the area, requiring further analysis of the performance of the eco-restoration project.  相似文献   
4.
When the observation of small headwater catchments in the pre-Alpine Alptal valley (central Switzerland) started in the late 1960s, the researchers were mainly interested in questions related to floods and forest management. Investigations of geomorphological processes in the steep torrent channels followed in the 1980s, along with detailed observations of biogeochemical and ecohydrological processes in individual forest stands. More recently, research in the Alptal has addressed the impacts of climate change on water supply and runoff generation. In this article, we describe, for the first time, the evolution of catchment research at Alptal, and present new analyses of long-term trends and short-term hydrologic behaviour. Hydrometeorological time series from the past 50 years show substantial interannual variability, but only minimal long-term trends, except for the ~2°C increase in mean annual air temperature over the 50-year period, and a corresponding shift towards earlier snowmelt. Similar to previous studies in larger Alpine catchments, the decadal variations in mean annual runoff in Alptal's small research catchments reflect the long-term variability in annual precipitation. In the Alptal valley, the most evident hydrological trends were observed in late spring and are related to the substantial change in the duration of the snow cover. Streamflow and water quality are highly variable within and between hydrological events, suggesting rapid shifts in flow pathways and mixing, as well as changing connectivity of runoff-generating areas. This overview illustrates how catchment research in the Alptal has evolved in response to changing societal concerns and emerging scientific questions.  相似文献   
5.
Dissolved pollutants in stormwater are a main contributor to water pollution in urban environments. However, many existing transport models are semi-empirical and only consider one-dimensional flows, which limit their predictive capacity. Combining the shallow water and the advection–diffusion equations, a two-dimensional physically based model is developed for dissolved pollutant transport by adopting the concept of a ‘control layer’. A series of laboratory experiments has been conducted to validate the proposed model, taking into account the effects of buildings and intermittent rainfalls. The predictions are found to be in good agreement with experimental observations, which supports the assumption that the depth of the control layer is constant. Based on the validated model, a parametric study is conducted, focusing on the characteristics of the pollutant distribution and transport rate over the depth. The hyetograph, including the intensity, duration and intermittency, of rainfall event has a significant influence on the pollutant transport rates. The depth of the control layer, rainfall intensity, surface roughness and area length are dominant factors that affect the dissolved pollutant transport. Finally, several perspectives of the new pollutant transport model are discussed. This study contributes to an in-depth understanding of the dissolved pollutant transport processes on impermeable surfaces and urban stormwater management.  相似文献   
6.
Few long-term studies have explored how intensively managed short rotation forest plantations interact with climate variability. We examine how prolonged severe drought and forest operations affect runoff in 11 experimental catchments on private corporate forest land near Nacimiento in south central Chile over the period 2008–2019. The catchments (7.7–414 ha) contain forest plantations of exotic fast-growing species (Pinus radiata, Eucalyptus spp.) at various stages of growth in a Mediterranean climate (mean long-term annual rainfall = 1381 mm). Since 2010, a drought, unprecedented in recent history, has reduced rainfall at Nacimiento by 20%, relative to the long-term mean. Pre-drought runoff ratios were <0.2 under 8-year-old Eucalyptus; >0.4 under 21-year-old Radiata pine and >0.8 where herbicide treatments had controlled vegetation for 2 years in 38% of the catchment area. Early in the study period, clearcutting of Radiata pine (85%–95% of catchment area) increased streamflow by 150 mm as compared with the year before harvest, while clearcutting and partial cuts of Eucalyptus did not increase streamflow. During 2008–2019, the combination of emerging drought and forestry treatments (replanting with Eucalyptus after clearcutting of Radiata pine and Eucalyptus) reduced streamflow by 400–500 mm, and regeneration of previously herbicide-treated vegetation combined with growth of Eucalyptus plantations reduced streamflow by 1125 mm (87% of mean annual precipitation 2010–2019). These results from one of the most comprehensive forest catchment studies in the world on private industrial forest land indicate that multiple decades of forest management have reduced deep soil moisture reservoirs. This effect has been exacerbated by drought and conversion from Radiata pine to Eucalyptus, apparently largely eliminating subsurface supply to streamflow. The findings reveal tradeoffs between wood production and water supply, provide lessons for adapting forest management to the projected future drier climate in Chile, and underscore the need for continued experimental work in managed forest plantations.  相似文献   
7.
吕海深 《水文》2020,40(1):13-17
大孔隙流是土壤优先流的一种,在植被发育区土壤大孔隙比较常见,对径流形成过程产生重要的影响。介绍了大孔隙流的研究方法,系统总结了近50年植被发育区土壤大孔隙对降雨入渗过程及径流形成过程的影响:从水分入渗的角度,大孔隙可以加快降雨入渗过程;由土壤大孔隙流与山坡产流的关系,大孔隙促进了边坡雨水的运动进而引起了快速产流;世界范围内的研究都表明土壤管流或大孔隙流是径流组分重要贡献者。  相似文献   
8.
Catchments have highly variable yields of runoff and soil erosion. The size, land use and the surface cover play a significant role and influence the catchment response and parameter values of simulation models. Two experimental basins—the Cariri basins—were equipped in a semi-arid region of Brazil, for obtaining runoff and sediment yield at different catchment scales, as well as, to evaluate the influence of the land use and surface cover. In the first basin, located in the municipality of Sumé, the field studies were carried out at two different scales: four micro-catchments with an area of around 0.5 ha and nine standard Wischmeier-type erosion plots of 100 m2. The experimental units had varied vegetation and management. They were subjected only to natural rainfall events, and were monitored from 1982 to 1991. The total runoff and total sediment yield were determined for each of the events. The installations in the second basin, in the municipality of São João do Cariri, from 1999, include two erosion plots, three micro-catchments, and two sub-catchments of a small basin. These basins are still being monitored for runoff and sediment production. Among the micro-catchments two are nested to detect any scale effect at the micro-catchment level. Nearly 600 events of precipitation, that produced runoff in at least one of the experimental units, have been registered. These data have been used to evaluate the influence of various factors, including cultivation practices and to calibrate hydrological models for plots and micro-catchments. Parameters have been tested by means of cross validations among micro-catchments and sub-catchments. The data sets are made available to all the catchment hydrology researchers and others at https://doi.org/10.5281/zenodo.4690886 .  相似文献   
9.
We investigate our ability to assess transfer of hexavalent chromium, Cr(VI), from the soil to surface runoff by considering the effect of coupling diverse adsorption models with a two‐layer solute transfer model. Our analyses are grounded on a set of two experiments associated with soils characterized by diverse particle size distributions. Our study is motivated by the observation that Cr(VI) is receiving much attention for the assessment of environmental risks due to its high solubility, mobility, and toxicological significance. Adsorption of Cr(VI) is considered to be at equilibrium in the mixing layer under our experimental conditions. Four adsorption models, that is, the Langmuir, Freundlich, Temkin, and linear models, constitute our set of alternative (competing) mathematical formulations. Experimental results reveal that the soil samples characterized by the finest grain sizes are associated with the highest release of Cr(VI) to runoff. We compare the relative abilities of the four models to interpret experimental results through maximum likelihood model calibration and four model identification criteria (i.e., the Akaike information criteria [AIC and AICC] and the Bayesian and Kashyap information criteria). Our study results enable us to rank the tested models on the basis of a set of posterior weights assigned to each of them. A classical variance‐based global sensitivity analysis is then performed to assess the relative importance of the uncertain parameters associated with each of the models considered, within subregions of the parameter space. In this context, the modelling strategy resulting from coupling the Langmuir isotherm with a two‐layer solute transfer model is then evaluated as the most skilful for the overall interpretation of both sets of experiments. Our results document that (a) the depth of the mixing layer is the most influential factor for all models tested, with the exception of the Freundlich isotherm, and (b) the total sensitivity of the adsorption parameters varies in time, with a trend to increase as time progresses for all of the models. These results suggest that adsorption has a significant effect on the uncertainty associated with the release of Cr(VI) from the soil to the surface runoff component.  相似文献   
10.
基于甘肃省清水县汤峪河径流小区2015—2017年的观测数据,研究不同植被恢复模式条件下坡面次降雨入渗、产流产沙特征。结果表明:不同植被恢复模式条件下的土壤入渗量与降雨强度呈二次函数关系,存在入渗量达到最大值的临界降雨强度。入渗速率与降雨历时可以用幂函数关系表达,符合考斯恰可夫入渗模型。不同植被恢复模式条件下的产流率在0.003 3~0.003 6 mm·min-1之间,相对裸地的减流率为54%~58%。产流率与降雨强度之间呈二次函数关系(R2>0.88),产流率的主要影响因素是降雨强度。径流含沙量平均值乔灌混合区(3.13 g·L-1)>灌木林(2.95 g·L-1)>乔木林(2.79 g·L-1)>草地(2.58 g·L-1),径流含沙量与降雨强度呈线性递增函数关系。裸地的产沙量显著高于各植被小区(P<0.05),是各植被小区的43~57倍,各植被小区的减沙率在93%~94%之间,减沙效益高于其减流效益。各植被坡面土壤流失量与降雨侵蚀力呈线性递增函数关系;产流率与侵蚀产沙率之间呈极显著正相关关系(P<0.01),二者间可采用二次函数关系表达。本研究成果可为黄土高原丘陵沟壑区水土保持优化配置提供理论依据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号